Dr. Carlton Waterhouse
Deputy Assistant Administrator
Office of Land and Emergency Management
U.S. Environmental Protection Agency

RE: Food Pathways in Chemical Cleanups

Dear Dr. Waterhouse:

We write to call to your attention a major gap in protection of the public from toxic chemicals at contaminated sites and urge you to arrange for EPA to commence an undertaking to remedy the situation. Specifically, the EPA should update its Regional Screening Levels (RSL) Calculator to incorporate food ingestion pathways, including consumption of homegrown foodstuffs in the resident scenario and a farmer scenario.

Consumption of fruits, vegetables, and other food raised in and on contaminated soils is an important pathway for exposure to pollutants for members of the public at many polluted sites. Although reliance on backyard and community gardens and subsistence farming affects a wide range of people, low income communities of color, Native American tribes, and rural communities are disproportionately affected. Addressing this exposure pathway is therefore especially important now in light of the Biden Administration’s focus on addressing environmental justice.

[Link to EPA’s Preliminary Remediation Goal (PRG) Calculator] for radionuclides already incorporates the garden and farmer scenarios. [Link to EPA’s Regional Screening Levels (RSL) Calculator] for chemicals, however, does not at present. Contaminated sites being cleaned up under CERCLA or RCRA are supposed to be cleaned up to remediation levels that take into...
account these food ingestion pathways when future land use (e.g., as set forth in local zoning) would allow them. However, because there is no RSL Calculator that can be used to assist in setting those levels, and therefore Remedial Project Managers would need to come up with separate levels for every individual site, it appears that the great majority of contaminated sites where such food ingestion pathways are relevant nonetheless do not consider them. In practical terms, this means that remediation levels at many sites may be very much less protective than they should be.

We therefore recommend that you initiate an EPA undertaking to upgrade the RSL Calculator to include the food ingestion pathways, parallel to what EPA already does for radionuclides in its PRG Calculator. While the task is not trivial, EPA already has a solid base of data on which such an effort can be based. For example, the PRG Calculator currently includes consumption rates for many individual types of homegrown fruits and vegetables (e.g., specific values for apples, peaches, berries, corn, potatoes, peas, etc.), drawn from EPA’s Exposure Factors Handbook.\(^1\) It also includes values for mass loading factors (MLFs), the amount of contaminated soil presumed to exist on the surfaces of produce, pasture, etc.\(^2\)

The main inputs that generally cannot be taken from the PRG calculator for radionuclides and used for chemicals are the soil transfer factors (Bv-wet, or Bio-Accumulation Factor, BAF), i.e., how much of the contaminant in the soil is taken up by the roots into the plant. The PRG calculator only includes soil transfer factors for radionuclides. While some of those radionuclide transfer factors could potentially be useful in estimating transfer factors for non-radioactive metals, transfer factors for organic chemicals would need to be obtained elsewhere. A good starting point would be EPA’s Eco-SSLs: Ecological Soil Screening Levels, Attachment 4-I, Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs), Exposure Factors and Bioaccumulation Models for Derivation of Wildlife Eco-SSLs, OSWER Directive 9285.7-55, Revised April 2007. See particularly Appendices B, C, and F and Table 4b.

While ironically assembled to deal with soil screening levels for ecological receptors, EPA’s Eco-SSL document includes a number of experimentally determined soil transfer values for toxic chemicals into various human food crops. It does not represent by any means a complete dataset—there presumably are a number of other measurements that pre-date it, and one would need to review studies performed in the years since its release, as well as identify additional studies that would be useful to fill data gaps—but it would be a good starting point.\(^3\) We have

1 While including many individual fruit and vegetable types, there are other food types, particularly for tribes, that are not in the PRG calculator and would be useful to add to it and to the RSL revision we are suggesting.

2 While EPA has a good starting point in the PRG Calculator, some of the MLFs in the PRG calculator are of poorer quality than others (particularly those relying on a generic estimate from Environment Agency of the UK) and all are fairly old, so a review of the literature to see if there are more recent and applicable values would be useful.

3 The measured soil transfer data for fruits and vegetables in the Eco-SSFL report make clear that one must rely on measured values, not use an ancient and highly unreliable simple uptake assumption based on the octanol-water coefficient, K_{ow}. Chemicals with similar K_{ow} values can have greatly different uptake factors, and measurements of K_{ow} for the same chemical can vary by orders of magnitude.
included as an attachment a summary of organic chemicals and the plants for which measured bioaccumulation factors are included in the Eco-SSL document.

The commitments by current EPA leadership to good science and to environmental justice reinforce the need to commence a scientifically high-quality program to incorporate the food ingestion pathways into EPA’s Regional Screening Levels for toxic chemicals, paralleling what is already done for radionuclides in EPA’s Preliminary Remediation Goals. Such an initiative would be particularly important in protecting vulnerable communities.

As you well know, many of the communities who would benefit by this change are environmental justice communities. In these disadvantaged communities, which are often food deserts unserved by supermarkets, growing fruits and produce is an important source of nutrition, as well as community connection. Inclusion of such a "garden pathway" into the RSL calculator would be a key public health safeguard for these communities.

In addition, a garden pathway is also easily understood by lay people. Its ultimate measure is one that can be grasped without reliance on a scientific formula. As such, it is an avenue for gaining community confidence and understanding of the protectiveness of the soil cleanup at any contaminated site. Community confidence and understanding are hard to win but remain key components in any successful EPA remediation.

We look forward to hearing from you whether EPA will undertake a project to incorporate the garden pathway into the RSL calculator for determining cleanup standards for sites contaminated with toxic chemicals, parallel to what is already done for radionuclides in the EPA PRG calculator.

Sincerely,

Public Employees for Environmental Responsibility
Jeff Ruch, Pacific Director
Oakland, CA for contact: jruch@peer.org

California Communities Against Toxics
Jane Williams, Executive Director
Rosamond, CA

Committee to Bridge the Gap
Dan Hirsch, President
Ben Lomond, CA

Natural Resources Defense Council
Caroline Reiser, Staff Attorney
Washington, DC
Multicultural Alliance for a Safe Environment
Core Group of Alliances: Bluewater Valley Downstream Alliance
Eastern Navajo Diné Against Uranium Mining
Laguna-Acoma Coalition for a Safe Environment
Post-71 Uranium Workers Committee
Red Water Pond Road Community Association
Susan Gordon, Coordinator
Albuquerque, NM

Beyond Pesticides
Drew Toher, Community Resource and Policy Director
Washington, DC

International Center for Technology Assessment
Jaydee Hanson, Policy Director
Washington, DC

Nuclear Information and Resource Service
Diane D'Arrigo, Radioactive Waste Project Director
Takoma Park, MD

Sugar Law Center For Economic & Social Justice
John Philo, Executive & Legal Director
Detroit MI

Don't Waste Arizona
Stephen Brittle, President
Phoenix, AZ

California Safe Schools
Robina Suwol, Executive Director
Los Angeles, CA

Center for Environmental Health
Kathryn Alcantar, Interim Policy Director
Oakland, CA

Ecological Options Network, EON
Mary Beth Brangan, Co-Director
Bolinas, CA
Mamavation
Leah Segedie, Founder
Simi Valley, CA

Physicians for Social Responsibility-Los Angeles
Denise Duffield, Associate Director
Los Angeles, CA

San Francisco Bay Physicians for Social Responsibility
Robert M. Gould, MD, President
San Francisco, CA

San Luis Obispo Mothers for Peace
Molly Johnson, Board
San Luis Obispo, CA

Tri-Valley CAREs (Communities Against a Radioactive Environment)
Marylia Kelley, Executive Director
Livermore, CA

Snake River Alliance
Leigh Ford, Executive Director
Boise, ID

Kentucky Environmental Foundation
Craig Williams, Director
Berea, KY

Citizens Awareness Network
Deb Katz, Executive Director
Shelburne Falls, MA

48217 Southwest Detroit
Theresa Landrum, Community Communications Liaison
Detroit, MI

Citizens Resistance At Fermi Two (CRAFT)
Jesse Deer In Water, Community Organizer
Redford, MI

Flint Rising
Nayyirah Shariff, Director
Flint, MI
Green Door Initiative
Donele Wilkins, Founder/CEO
Detroit, MI

Interfaith Council for Peace and Justice
Desirae Simmons, Co-Director
Ypsilanti, MI

Michigan Environmental Justice Coalition
Juan Jhong-Chung, Climate Justice Director
Detroit, MI

Soulardarity
Shimekia Nichols, Executive Director
Highland Park, MI

Midwest Food Connection
Katya Wesely, Program Coordinator
Minneapolis, MN

MN BIPOC Environmental Justice Table
Krystle D'Alencar, Organizer
Minneapolis, MN

Clean Air Action Network of Glens Falls
Tracy Frisch, Lead Organizer
Glens Falls, NY

Community Concerned about NL Industries
Claudia Ramundo
Colonie, NY

Council on Intelligent Energy & Conservation Policy
Michel Lee, Chair
Scarsdale, NY

New York Public Interest Research Group
Anne Rabe, Environmental Policy Director
Albany, NY

United Neighbors Concerned About the Dewey Loeffel Dump
Kelly Travers Main
Nassau, NY
Ohio Nuclear Free Network
Patricia Marida, Coordinator
Toledo, OH

Dallas Peace and Justice Center
Peace Farm
War Resisters League
Mavis Belisle, Cochair
Dallas, TX

Sustainable Energy and Economic Development (SEED) Coalition
Karen Hadden, Executive Director
Austin, TX

Nukewatch
John LaForge, Co-Director
Luck, WI

Peace Action WI
Pamela Richard, Office Manager
Milwaukee, WI